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ABSTRACT

Learning disentangled representations that uncover factors of variation in data re-
mains an ongoing key challenge in representation learning. Recent concerns about
the feasibility of learning disentangled representations in an unsupervised fashion
have motivated a shift toward weak supervision. One way to incorporate weak
supervision is through match pairing, i.e., using observations as pairs that share
at least one factor of variation. Existing match pairing approaches only consider
the structural constraints with an average approximate posterior over observations
of a shared group. We show the limitations of these approaches and propose a
novel formulation to enforce disentangled representations of groups through total
correlation, which improves overall disentanglement on various image datasets.

1 INTRODUCTION

Decomposing data into disjoint independent factors of variations and thus learning disentangled rep-
resentations is essential for interpretable and controllable machine learning Shu et al. (2019). Recent
works have shown the usefulness of disentangled representation with respect to abstract reasoning
(van Steenkiste et al. (2019)), fairness (Locatello et al. (2019a); Creager et al. (2019)), reinforcement
learning (Higgins et al. (2017b)) and general predictive performance (Locatello et al. (2019b)). Even
though unsupervised disentanglement methods (Higgins et al. (2017a); Kim & Mnih (2018); Chen
et al. (2018)) have shown promising results to learn disentangled representations, Locatello et al.
(2019b) showed in a rigorous study that it is impossible to disentangle variations of data without any
supervision or inductive bias. Since then, there has been a shift toward weakly supervised disentan-
glement learning Locatello et al. (2019b), Shu et al. (2019) such as match pairing (Shu et al. (2019))
which uses paired observations during optimization. In this work, we present a framework to learn
group-disentangled representations using total correlation in a weakly-supervised setting. Our work
can be considered learning different levels of weakly-supervised group disentanglement with total
correlation. Closely related work is the one of Creager et al. (2019) which proposed to minimize the
mutual information between the sensitive latent variable and sensitive labels. Similarly, Klys et al.
(2018) proposed to minimize mutual information between the latent variable and a conditional sub-
space. Both works require either supervised labels or conditions to estimate the mutual information,
whereas we only use weak supervision for learning disentangled group representations. Locatello
et al. (2020) proposed to disentangle groups of variations with only knowing the number of common
groups which can be considered as a complementary component to our method. We show that our
approach can flexibly disentangle between and within groups of factors of variation. Further, we
demonstrate that we improve on disentanglement for various image datasets.

In summary, we make the following contributions:

1. We show limitations of existing group disentanglement approaches (Bouchacourt et al.
(2018) and Hosoya (2019)) in terms of latent variable collapse and batch size sensitivity
and propose a weakly-supervised way for addressing these weaknesses.

2. We propose a new way of learning disentangled representations from paired observations
using total correlation. We also show how to enforce different levels of inter-group and
intra-group disentanglement through total correlation.
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Figure 1: The proposed generative and inference model. Shaded nodes denote observed quan-
tities, and unshaded nodes represent unobserved (latent) variables. Dotted arrows represent either
minimizing the TC or the KL divergence between variables.

2 BACKGROUND

VAEs are latent variable models and aim to learn latent variables z which should capture informa-
tion about the observations {x1, . . . ,xn}. They are trained to maximize the evidence lower bound
(ELBO) given as log p(x) ≥ Eqφ [log pθ(x|z)] − DKL(qφ(z|x) ‖ p(z)). To be consistent with
the works of Bouchacourt et al. (2018) and Hosoya (2019), let us assume that the observations
X = {x1, . . . ,xn} are collected in G distinct groups. Within a group, all observations share some
fixed factors of variations. Each group g ∈ G splitsX into disjoint partitions with arbitrary sizes. For
simplicity, we define two groups gC and g\C ; where gC represents information about the actual con-
tent whereas g\C represents any variation not contained in C. Given a pair of observations (x,x′)
which share group factors c, we define two variables z = (zc, z\c) and z′ = (zc, z\c) to capture
content (zc, zc′ ) and non-content information (z\c, z\c′ ), e.g. style or background. (Bouchacourt
et al. (2018); Hosoya (2019)) learn a group-specific latent variable z̄c,c′ by averaging over the cor-
responding content latent variable zc, zc′ during inference. The modified objective considers the
ELBO of paired observations (x,x′) i.i.d. sampled from group gC

LWS-ELBO(x,x′; θ, φ) = Eqφ [log pθ(x|z̄c,c′ , z\c)] + Eqφ [log pθ(x
′|z̄c,c′ , z\c′)]

− βDKL(qφ(z̄c,c′ , z\c|x) ‖ p(z))− βDKL(qφ(z̄c,c′ , z\c′ |x′) ‖ p(z)),
(1)

where z̄c,c′ is sampled from either a Normal distribution over the average of learned means and
covariances (Hosoya (2019)) or a product of Normal distributions (Bouchacourt et al. (2018)).

3 LEARNING GROUP SIMILARITIES USING TOTAL CORRELATION

Considering the setting in Section 2, we would like 1) zc to be highly correlated with group C and
z\c to be highly correlated with group \C and 2) zc ≈ zc′ if the paired observations share the
same content c or z\c ≈ z\c′ if the paired observations share the same non-content \c. In what
follows, we describe our approach with the generative and inference model visualized in Figure 1.
Although existing works showed promising results, in practice, minimizing the objective in (1) will
not necessarily fulfill the first requirement, i.e., the model will learn representations zc and z\c that
are uncorrelated with each other. Therefore, along with maximizing the variational lower bound, we
propose to minimize the total correlation between latent variables zc and z\c.

The total correlation of zc and z\c is defined as

TC(zc, z\c) = DKL(q(zc, z\c) ‖ q̄(zc, z\c)) (2)

where q̄(zc, z\c) denotes the desired factorization of the aggregated posterior q(zc, z\c). With dif-
ferent factorization, we can enforce different levels of disentanglement:

1. Inter-group disentanglement: [zc, z\c] is said to be disentangled if its aggregate posterior
factorizes as q̄(zc, z\c) = q(zc) · q(z\c). Note that under this disentanglement criteria,
each zc and z\c can be correlated among themselves. However, they must be independent
of each other.
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(a) Inter-group disentanglement
(q(zc) · q(z\c))

(b) Inter- and intra-group disen-
tanglement (q(zc) ·

∏
j q(z\c,i))

(c) Total disentanglement
(
∏

i q(zc,j) ·
∏

j q(z\c,i))

Figure 2: Different factorizations encourage different levels of disentanglement. The latent
variable zc representing content information is visualized as red tiles whereas z\c representing non-
content information is visualized as blue tiles. The different shades of colors represents correlation
to different factors of variation.

2. Inter-group disentanglement and intra-group disentanglement of one group: [zc, z\c] and
z\c are disentangled if the aggregate posterior factorizes as q(zc, z\c) = q(zc)·

∏
j q(z\c,i).

With this criteria, zc is still free to co-vary together, but must be independent from all z\c,i.
Further each dimension of z\c is disentangled. This kind of disentanglement was also used
by Creager et al. (2019).

3. Inter-group disentanglement and intra-group disentanglement of all groups: We can enforce
total disentanglement if the aggregate posterior factorizes as q(zc, z\c) =

∏
i q(zc,j) ·∏

j q(zs,i). This is equivalent to disentanglement achieved in the FactorVAE objective Kim
& Mnih (2018).

A visualization of these levels can be found in Figure 2. These types of disentanglement are useful
for cases where only high-level labels are available, e.g., content vs. style, and only some groups
can be further disentangled. Existing works have addressed the second requirement for group disen-
tanglement (“shared observations have approx. same corresponding group latent variable”) by using
some average over the content latent variable. However, this estimate is biased and requires a certain
amount of observations that share the same factors. This might be difficult with sparse, incomplete,
and small datasets. We propose a KL-based regularization between the group latent variables of
paired observations. This has an analytical form when the latent variables are Normal distributed
and does not have any batch-size dependency. Using the total correlation (TC) and a KL term on the
group latent variable, the objective becomes

L =
∑

x̃=x,x′

(
Eqφ [log pθ(x̃|z̃c, z̃\c)]︸ ︷︷ ︸

reconstruction

− DKL(qφ(z̃c, z̃\c|x̃) ‖ p(z))︸ ︷︷ ︸
KL between approx. posterior and prior

)

−
∑

z̃=z,z′

β · TC(z̃c, z̃\c)︸ ︷︷ ︸
total correlation

− γ · DKL(q(zg) ‖ q(zg′))︸ ︷︷ ︸
KL between shared group latent variables

,
(3)

where g ∈ {c, \c} is the group which is being shared by the paired observations (x,x′). For
evaluation, we used a binary adversary which approximates the log density ratio (Kim & Mnih
(2018)) to estimate the total correlation loss. We use an adversarial network which attempts to
classify between “true” samples from the aggregate posterior q(zc, z\c) and “fake” samples from
the product of the marginals q̄(zc, z\c). The latent variables are independent from each other if the
samples are indistinguishable and the adversary cannot do it better than random chance.

4 EVALUATION

Following the experimental setup in (Locatello et al. (2019b); Chen et al. (2018)), we treated learn-
ing disentangled representations as a statistical problem instead of empirical risk minimization and
hence, did not use the separate train and test sets. For evaluation, we used two datasets, namely,
3DShapes (Burgess & Kim (2018)) and dSprites (Matthey et al. (2017)). We compare our model,
group-tcVAE, with MLVAE, Bouchacourt et al. (2018), and GVAE, Hosoya (2019). Locatello et al.
(2020) have already shown that both works by Bouchacourt et al. (2018) and Hosoya (2019) are
superior to the unsupervised disentanglement approaches, hence, we do not compare with them.
We quantitatively compare the strength of disentanglement with the Mutual Information Gap (MIG)
(Chen et al. (2018)). Further, we introduce group-MIG, a metric based on MIG, which quantitatively
estimates the mutual information between groups and corresponding latent variables. Formally, we
define group-MIG as 1

K

∑K
k=1

1
H(vk)

(max I(zi=fg(vk); vk)−max I(zi6=fg(vk); vk)) where K is the
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(a) 3DShapes: MI between latent dimensions
and factors of variation of trained GVAE model
with MIG = 0.55 and group-MIG = 0.44.
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(b) dSprites: group-MIG of
content and non-content infor-
mation for all hyperparameter
runs for MLVAE and GVAE.
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Figure 3: Collapse and sensitity of existing weakly-supervised disentanglement models. In all
the sub-figures higher is better.
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Figure 4: Comparisons between group-tcVAE and comparisons. Density plots of group-MIG
and MIG for group-tcVAE, MLVAE and GVAE) over all runs (higher is better).

number of known factors, vk is the ground truth factor, fg(vk) ∈ {c, \c} returns the group that the
factor belongs to and I(z; vk) is an empirical estimate of mutual information between continuous
variable z and vk.

4.1 EMPIRICAL ANALYSIS OF EXISTING WEAKLY-SUPERVISED METHODS

Collapse of content latent variable. The latent variable zc can either collapse to a single factor of
variation or it might even contain almost no information to any content. We visualize such behavior
in Figure 3 (a) on a GVAE model trained on 3DShapes with two groups of variations c ={object
color, object size and object type} and \c ={floor color, wall color, azimuth}. Ideally, z1 − z5
contains high mutual information with group factors \c and z6 − z10 contains high mutual infor-
mation with group factors c. However, most information is captured in z1 − z5, whereas only a
little information about object type is contained in z6. As shown in Figure 3 (b), we make similar
observations with dataset dSprites in which both MLVAE and GVAE fail to capture content-specific
information in the corresponding latent variable.

Sensitivity to group batch size. In practice, always having a certain number of observations that
share the same group variations might be difficult, which is a requirement for MLVAE and GVAE
with dSprites. This results in performance degradation and high variance (Figure 3(c)).

4.2 WEAKLY-SUPERVISED DISENTANGLEMENT

We perform an extensive evaluation on group-tcVAE to assess its performance in comparison to ML-
VAE and GVAE. For MLVAE and GVAE, we experimented with the hyperparameters as in Locatello
et al. (2020). For group-tcVAE, we used the hyperparameter ranges β = [10, 20, 30, 40, 50, 100],
λ = [1, 8, 16, 32, 64] and a batch size of 32 paired observations (= 32× 2). For all models, we per-
formed five runs with different random seeds. We plotted all results in Figure 4. For both group-MIG
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(a) (b) (c) (d)

Figure 5: Qualitative results of group-tcVAE. Training samples (a, c) and reconstruction as well
as interpolations (b, d) for dSprites (a, b) and 3DShapes (c, d). Each row represents a pair of
observations in (a, c). For the interpolations, each i-th row represents interpolating over only the i-th
dimension of z.

and MIG, group-tcVAE outperforms MLVAE and GVAE w.r.t. average and best MIG and group-
MIG. With dSprites, group-tcVAE almost doubles the average and best performance, whereas with
3DShapes we observe an increase of at least 10% w.r.t. group-MIG and MIG. For the best perform-
ing models, we also plotted training samples and qualitative results in Figure 5.

5 CONCLUSION

We have analyzed existing weakly-supervised disentanglement models and identified challenges
w.r.t. latent variable collapse and batch size sensitivity. We proposed a new framework based on total
correlation for weakly-supervised disentanglement and showed through empirical evaluations on
image datasets that our model improves learning disentangled representations. For future work, we
plan to apply our proposed framework to challenging real-world data sets and non-image domains
and extend it to semi weakly-supervised and active learning settings.
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