
Published at ICLR 2021 Workshop on Weakly Supervised Learning

HANDLING LONG-TAIL QUERIES WITH SLICE-AWARE
CONVERSATIONAL SYSTEMS

Cheng Wang, Sun Kim, Taiwoo Park, Sajal Choudhary
Amazon Alexa AI
{cwngam, kimzs, parktaiw, sajalc}@amazon.com

Sunghyun Park, Young-Bum Kim, Ruhi Sarikaya, Sungjin Lee
Amazon Alexa AI
{sunghyu, youngbum, rsarikay, sungjinl}@amazon.com

ABSTRACT

We have been witnessing the usefulness of conversational AI systems such as
Siri and Alexa, directly impacting our daily lives. These systems normally rely
on machine learning models evolving over time to provide quality user experi-
ence. However, the development and improvement of the models are challenging
because they need to support both high (head) and low (tail) usage scenarios, re-
quiring fine-grained modeling strategies for specific data subsets or slices. In this
paper, we explore the recent concept of slice-based learning (SBL) (Chen et al.,
2019) to improve our baseline conversational skill routing system on the tail yet
critical query traffic. We first define a set of labeling functions to generate weak
supervision data for the tail intents. We then extend the baseline model towards
a slice-aware architecture, which monitors and improves the model performance
on the selected tail intents. Applied to de-identified live traffic from a commer-
cial conversational AI system, our experiments show that the slice-aware model is
beneficial in improving model performance for the tail intents while maintaining
the overall performance.

1 INTRODUCTION

Conversational AI systems such as Google Assistant, Amazon Alexa, Apple Siri and Microsoft
Cortana have become more prevalent in recent years (Sarikaya, 2017). One of the key techniques
in those systems is to employ machine learning (ML) models to route a user’s spoken utterance
to the most appropriate skill that can fulfill the request. This requires the models to first capture
the semantic meaning of the request, which typically involves assigning the utterance query to the
candidate domain, intent, and slots (El-Kahky et al., 2014). For example, “Play Frozen” can be
interpreted with Music as the domain, Play Music as the intent, and Album Name:Frozen as the slot
key and value. Then, the models can route the request to a specific skill, which is an application
that actually executes to deliver an experience (Li et al., 2021). For commercial conversational
AI systems, there usually exists a large-scale dataset of user requests with ground-truth semantic
interpretations and skills (e.g., through manual annotations and hand-crafted rules or heuristics).
Along with various contextual signals, it is possible to train ML models (e.g., deep neural networks)
with high predictive accuracy in routing a user request to the most appropriate skill, which then can
continue to optimize towards better user experience through implicit or explicit user feedback (Park
et al., 2020).

Nevertheless, developing such ML models or improving existing ones towards better user experience
is still challenging. One hurdle is the imbalance in the distribution of the user queries with a long
tail in terms of traffic volume. This often makes it difficult for the ML models to learn the patterns
from the long-tail queries, some of which could be for critical features. Several approaches have
been proposed to address such imbalance issue (Smith et al., 2014; He et al., 2008; Chawla et al.,
2002). However, they are mainly based on applying reverse-discriminative sampling strategies,

1

Published at ICLR 2021 Workshop on Weakly Supervised Learning

for example, over-sampling minority and/or under-sampling majority. The sampling methods are
usually insufficient in inspecting and improving model performance on pre-defined data subgroups.

In this work, we focus on the problem of imbalanced queries, specifically on tail but critical intents,
in the context of the recently proposed slice-based learning (SBL) (Chen et al., 2019). SBL is a
novel programming model that sits on top of ML systems. The approach first inspects particular data
subsets (Ratner et al., 2019), which are called slices, and it improves the ML model performance on
those slices. While the capability of monitoring specific slices is added to a pre-trained ML model
(which is termed the backbone model), the approach has shown that overall performance across the
whole traffic is comparable to those without SBL. Motivated by this idea, we propose to adopt the
SBL concept to our baseline skill routing approach (we term the baseline model as P; please refer
to Sec. 3.1 for details) to improve its performance on tail yet critical intent queries while keeping
the overall performance intact. First, we define slice functions (i.e., labeling functions) to specify
the intents that we want to monitor. A pre-trained P is used as a backbone model for extracting
the representation for each query. Then, we extend P to a slice-aware architecture, which learns to
attend to the tail intent slices of interest.

We perform two experiments using a large-scale dataset with de-identified customer queries. First,
we examine the attention mechanism in the extended model P with SBL. In particular, we test
two attention weight functions with different temperature parameters in computing the probability
distribution over tail intent slices. Second, we compare SBL to an upsampling method in P for
handling tail intents. Our experiments demonstrate that SBL is able to effectively improve the ML
model performance on tail intent slices as compared to the upsampling approach, while maintaining
the overall performance.

We describe the related work in Section 2. In Section 3, we explain the baseline skill routing
model, P, and then elaborate how to extend it to a slice-aware architecture. The experiment results
are reported in Section 4, and in Section 5, we discuss the advantages and potential limitations of
applying SBL in our use case. We conclude this work in Section 6.

2 RELATED WORK

2.1 SLICE-BASED LEARNING

Slice-based learning (SBL) (Chen et al., 2019) is a novel programming model that is proposed to
improve ML models on critical data slices without hurting overall performance. A core idea of SBL
is to represent a sample differently depending on the data subset or slice to which it belongs. It de-
fines and leverages slice functions, i.e., pre-defined labeling functions, to generate weak supervision
data for learning slice-aware representations. For instance, in computer vision (CV) applications,
a developer can define object detection functions to detect whether an image contains a bicycle or
not. In natural language understanding (NLP) applications, a developer can define intent-specific
labeling functions such as for Play Music intent. SBL exhibits better performance than a mixture
of experts (Jacobs et al., 1991) and multi-task learning (Caruana, 1997), with reduced run-time cost
and parameters (Chen et al., 2019). Recently Gustavo et al. (Penha & Hauff, 2020) have employed
the concept of SBL to understand failures of ranking models and identify difficult instances in order
to improve ranking performance. Our work applies the idea to improve skill routing performance on
low traffic but critical intents in conversational AI systems.

2.2 WEAKLY SUPERVISED LEARNING

Weakly supervised learning attempts to learn predictive models with noisy and weak supervision
data. Typically, there are three types of weak supervision: incomplete supervision, inexact supervi-
sion, and inaccurate supervision (Zhou, 2018). Various weakly supervised ML models are developed
in NLP (Medlock & Briscoe, 2007; Huang et al., 2014; Wang & Manning, 2014) and in CV (Prest
et al., 2011; Oquab et al., 2015; Peyre et al., 2017). Recently, promising approaches have been pro-
posed to generate weak supervision data by programming training data (Ratner et al., 2016). In a
large-scale industry setting, weak supervision data are highly desired given that human annotations
are costly and time-consuming. Our work relates to weakly supervised learning in terms of inaccu-
rate supervision. We split queries into different groups (slices) by defining labeling functions (slice
functions). Each group is assigned with a group identity label. In practice, the slice functions may

2

Published at ICLR 2021 Workshop on Weakly Supervised Learning

not perfectly assign labels to input data as mentioned in SBL (Chen et al., 2019; Cabannnes et al.,
2020).

2.3 CONVERSATIONAL SKILL ROUTING MODELS

In conversational AI systems, a skill refers to the application that actually executes on a user query
or request to deliver an experience, such as playing a song or answering a question. The skills
often comprise both first-party and third-party applications (Li et al., 2021). The skill routing is a
mechanism that maps users’ queries, given contextual information such as semantic interpretations
and device types, to an appropriate application. The routing decision is usually determined by an
ML model that is separate from typical natural language understanding (NLU) models for domain,
intent, slot parsing. Please refer to section 3.1 for more details.

3 SLICE-AWARE CONVERSATIONAL SKILL ROUTING MODELS

This section explains our skill routing model (backbone model) and then explains how we extend
the backbone model to a slice-aware architecture by adapting the concept from SBL (Chen et al.,
2019).

a1
a2

ak-1
ak

r1
r2

rk-1
rk

… …

Backbone Model

(slice expert) (shared head)

(slice indicator)

x

r1
r2

rk-1
rk

…

×

(slice functions)

s

(attention module)

(prediction)
hypothesis

Figure 1: The slice-aware conversational skill routing model architecture for handling low traffic
but critical intents. It consists of six components: (1) slice functions define tail intent slices that we
want to monitor; (2) backbone model is our pre-trained skill routing model P that is used for feature
extraction; (3) slice indicators are membership functions to predict if a sample query belongs to a
tail slice; (4) slice experts aim to learn slice-specific representations; (5) shared head is the base
task predictive layer across experts; (6) An attention module is used to re-weight the slice-specific
representations r and form a slice-aware representation s. Finally, the learned s is used to predict a
final hypothesis (associated skill). The predicted hypothesis is used to serve a user query.

3.1 BACKBONE MODEL

We take our baseline skill routing approach (P) as the backbone model and aim to make it a slice-
aware architecture. P is a skill routing model, which takes in a list of routing candidates to select the
most appropriate one. Each routing candidate is represented as a hypothesis with various contextual
signals, such as utterance text, device type, semantic interpretation, and associated skill. While
some contextual signals are common across all hypotheses, some are unique due to the presence
of multiple competing semantic interpretations and skill-specific context. The core component of
P consists of attention-based bi-directional LSTMs (Hochreiter & Schmidhuber, 1997; Graves &
Schmidhuber, 2005) with fully connected layers on top of it. Formally, Let X be the set of query
signals (e.g., utterance text, semantic interpretations, device type, etc.), H = {h1, ..., hn} be the
hypothesis list and hg ∈ H, g = [1, n] be the ground-truth hypothesis. The learning objective is to
minimize the binary cross entropy:

ζbase = Lbce(π(M(X,H)), hg), (1)

3

Published at ICLR 2021 Workshop on Weakly Supervised Learning

def intent_based_slice_function_1(sample):
return sample[’intent’] == "Buy Item"

def intent_based_slice_function_2(sample):
return sample[’intent’] == "Select Music"

def intent_based_slice_function_3(sample):
return sample[’intent’] == "Buy Book"

Table 1: The slice functions (SFs) which split user queries into multiple data slices according to
the pre-defined tail intents. The non-tail intents are in a base slice. Note SFs are only available at
training stage for generating weak supervision labels. At inference stage, SFs will not be applied.

where π is a linear predictive layer which outputs a prediction over hypotheses Ĥ = {ĥ1, ..., ĥn},
andM is a set of multiple neural network layers, which extract the representation x ∈ Rn×d for a
given (X,H) pair, i.e., x =M(X,H).

To evaluate the effectiveness of trained P, we define offline evaluation metric called replication
accuracy (RA):

RA(Dtest) =
∑

(X,H,hg)∈Dtest

I(ĥg = hg)

|Dtest|
. (2)

The replication accuracy measures how effectively the trained model P replicates the current skill
routing behavior in production which is a combination of ML model and rules. Though P achieves
high performance, replicating most of heuristic patterns, it suffers from low RA in low-volume
traffic, i.e., the tail user queries. We later introduce how we extend P with a slice-aware component.

3.2 SLICE-AWARE ARCHITECTURE

As presented in Figure 1, a slice-aware architecture consists of several components.

Slice Function. We first define slice (or labeling) functions to slice user queries according to intent
(e.g., “Buy Book”). The selected intents have a small number of query instances, making the model
P difficult to learn data patterns from tail intents. Each sample is assigned a slice label γ ∈ [0, 1] in
{γ1, γ2, ..., γk} for supervision. s1 is the base slice, and s2 to sk are the tail slices.

Slice Indicator. For each tail intent slice, a slice indicator (membership function) is learned
to indicate whether a sample belongs to this particular slice or not. For a given representation
x ∈ Rn×d from the backbone model, we learn ui = fi(x;w

f
i), wf

i ∈ Rd×1, i ∈ {1, .., k}
that maps x to u = {u1, ..., uk}. fi is trained with {x, γ} pairs with the binary cross entropy
ζind =

∑k
i Lbce(ui, γi).

Slice Expert. For each tail intent slice, a slice expert gi(x;w
g
i), w

g
i ∈ Rd×d is used to learn a

mapping from x ∈ Rn×d to a slice vector ri ∈ Rd with the samples only belonging to the tail
slice. Followed by a shared head, which is shared across all experts and maps ri to a prediction
ĥ = ϕ(ri;ws), gi and ϕ are learned on the base (original) task with ground-truth label hg by
ζexp =

∑k
i γiLbce(ĥ, hg).

Attention Module. The attention module decides how to pay special attention to the monitored
slices. The distribution over slices (or attention weights) are computed based on stacked k mem-
bership likelihood P ∈ Rk and stacked k experts’ prediction confidence Q ∈ Rk×c as described in
(Chen et al., 2019):

a2 = SOFTMAX(P + |Q|). (3)

Note, the above equation is used when c = 1 (i.e., binary classification). As our task is a multi-
class classification task where c ≥ 2, we use an additional linear layer to transform Q ∈ Rk×c to
φ(Q) ∈ Rk. Finally, we experiment with the following different ways to compute attention weights,
i.e., slice distribution:

4

Published at ICLR 2021 Workshop on Weakly Supervised Learning

a1 = SOFTMAX(P/τ) (4)
a2 = SOFTMAX([P + |φ(Q)|]/τ). (5)

In Eq. 4, we only use the output of the indicator function (membership likelihood) in computing
attention weights. In Eq. 5 we use both the membership likelihood and the transformed experts’
prediction scores. The τ is a temperature parameter. In principle, smaller τ can lead to a more
confident slice distribution (Wang & Niepert, 2019; Wang et al., 2021), hence we aim to examine if
a small τ helps improve the routing performance.

4 EXPERIMENTS

We evaluate the skill routing model P with slice-based learning (SBL) (Chen et al., 2019) (we term
it as S) by performing two groups of experiments. First, we test the attention module with different
methods of computing the attention weights over slices. Second, we compare the effectiveness of
SBL against upsampling – a commonly used method for handling tail data.

4.1 EXPERIMENT SETUP AND IMPLEMENTATION DETAILS

We obtained live traffic from a commercial conversational AI system in production and processed
the data so that individual users are not identifiable. We randomly sampled to create an adequately
large data set for each training and test dataset. We further split the training set into training and
validation sets with a ratio of 9:1. We used the replication accuracy (Eq. 2) to measure the model
performance.

The existing production model P and its extension with SBL were implemented with Py-
torch (Paszke et al., 2019). The hidden unit size for slice component was 128. All models were
trained on AWS p3.8xlarge instances with Intel Xeon E5-2686 CPUs, 244 GB memory, and 4
NVIDIA Tesla V100 GPUs. We used Adam (Kingma & Ba, 2014) with a learning rate of
0.001 as the optimizer. Each model was trained with 10 epochs with the batch size of 256. We
split the user queries into 21 data slices in total, one base slice and the rest for 20 tail intent
slices. For each extracted query representation x for the tail intents, we add a Gaussian noise
x = x+ δ, δ ∼ N (0, 0.005) to augment the tail queries.

4.2 EXPERIMENTS ON THE ATTENTION MECHANISMS

Table 2 shows the absolute score difference in replication accuracy between the baseline model and
its SBL extension, having the baseline model’s all-intent accuracy as a reference. As shown in the
table, the slice-based approaches maintain the baseline performance overall, but the RA performance
is lifted on the monitored tail slices. The best attention mechanism outperforms the baseline by 0.1%
in tail intents’ replication accuracy1. Tuning the temperature parameter between τ = 0.1 or τ = 1.0
does not significantly improve model performance on the tail intents.

Attention Methods All Intents (%) Tail Intents (%)
P (baseline model) >99 –1.45

SBL, Eq. (4), τ = 1.0 +0.01 –1.35
SBL, Eq. (5), τ = 1.0 +0.01 –1.36
SBL, Eq. (4), τ = 0.1 +0.01 –1.34
SBL, Eq. (5), τ = 0.1 +0.01 –1.38

Table 2: The performance comparison of the baseline model P and its SBL extension with different
attention weights in replication accuracy. All data points denote the absolute difference from the
baseline model’s all intents accuracy value.

1Given the large volume of query traffic per day, 0.1% is still a significant improvement in our system.

5

Published at ICLR 2021 Workshop on Weakly Supervised Learning

4.3 COMPARISON BETWEEN SLICE-BASED LEARNING AND UPSAMPLING

As upsampling is a widely used method to alleviate the tail data problem, we compare the
performance between SBL and upsampling methods. Note SBL offers an additional advantage for
inspecting particular tail data groups which are also critical. We denote the models as the following:

• P is the baseline model that is trained without applying upsampling.

• S is an extension of P (as a backbone model) to be a slice-aware model, which is trained
with same training set as P.

• Pup is the baseline model that is trained with applying upsampling.

• Sup is an extension of Pup to be a slice-aware model, which is trained with same training
set as Pup.

All the trained models are evaluated on the same test set. Among the aforementioned attention
method choices, Eq. 4 with τ = 1.0 is employed for S and Sup. Our primary goal is to see whether
S can improve Pup.

Table 3 shows the performance comparison. When comparing Pup and S, we can see S achieves
slightly better performance for all intents. For the monitored tail intents, S achieves a slightly higher
score as compared to Pup.

Models All Intents (%) Tail Intents (%)
P >99 –1.41
Pup 0.00 –1.47
S +0.01 –1.30
Sup +0.01 –1.37

Table 3: Performance comparison between the baseline model and its slice-aware architecture. P is
the baseline model without upsampling, Pup is P with upsampling. S is the slice learning model
with P as the backbone model, and Sup is the slice learning model with Pup as the backbone model.
All data points are absolute score difference from the baseline model’s all intent accuracy value.

Table 4 presents the absolute RA difference between the baseline and slice-aware models for the
monitored 20 tail intents. Comparing S and Pup, S improves the model performance on 14 tail
intents. Compared to Pup, S shows the comparable performance lift while effectively suppressing
performance drops, for example, intent IDs 2, 3, 6, 15, and 20. As a result, Pup shows lower
performance on 12 intents out of 20 (–2.41% on average), while S did on only 5 intents (–0.21% on
average). This suggests the capability of slice-based learning in treating target intents through the
slice-aware representation.

5 DISCUSSION

In our experiments, we have shown the effectiveness of SBL in terms of improving model perfor-
mance on tail intent slices. It is beneficial to have ML models which are slice-aware, particularly
when we want to inspect some specific and critical but low-traffic instances. Although the overall
performance gain of slice-aware approach compared to the upsampling was marginal, it is worth-
while to note that the slice-aware approach was able to lift up the replication accuracy for more
number of tail intents while minimizing unexpected performance degradation that was more no-
ticeable in the upsampling approach. This result implies that the slice-aware approach has more
potential in stably and evenly supporting tail intents.

On the other hand, we also note a potential limitation of SBL in the case of addressing tail intents in
the industry setting. As we increase the number of tail intents, for instance to 200 intents, the model’s
complexity increases as well, given that an indicator function and an expert head are needed for each
slice. However, this does not necessarily diminish the value of the slice-aware architecture, as the
upsampling method offers no chance for us to inspect and analyze model failures on particular slices.

6

Published at ICLR 2021 Workshop on Weakly Supervised Learning

Tail Intent ID P Pup S Sup Sample Size
1 >99 –0.03 0.00 –0.02 Over 10K
2 >96 –0.4 +0.04 –0.21 Over 10K
3 >96 –0.19 +0.09 –0.18 Over 10K
4 >72 +0.07 +1.98 +0.96 Over 10K
5 >99 +0.01 –0.01 0.00 Over 10K
6 >96 –0.09 +0.02 –0.11 Over 10K
7 >96 +0.03 +0.02 –0.04 Over 10K
8 >99 +0.15 +0.01 +0.19 Over 10K
9 >96 –0.24 +0.06 +0.07 Over 10K

10 >96 +0.08 –0.03 0.00 Between 1K - 10K
11 >99 0.00 0.00 0.00 Between 1K - 10K
12 >96 +0.55 –0.13 +0.46 Between 1K - 10K
13 >96 +0.36 +0.42 +0.53 Between 1K - 10K
14 >93 –0.39 –0.14 –0.42 Between 1K - 10K
15 >93 –3.29 –0.73 –1.46 Between 1K - 10K
16 >96 –1.2 0.00 –0.93 Below 1K
17 >96 –0.71 0.00 –0.71 Below 1K
18 >99 –0.16 0.00 –0.16 Below 1K
19 >99 –0.96 0.00 –1.15 Below 1K
20 >96 –21.21 0.00 –18.18 Below 1K

Table 4: Score (in %) differences in RA between the baseline and slice-aware approaches at the
intent level. The baseline model’s accuracy scores are rounded down to the nearest multiple of 3
percent, while the other models’ are absolute score differences from the baseline ones. We denote
each intent with their IDs. Sample Size is the number of random instances used for testing.

Further studies are necessary to employ and fine-tune the slice-based approach to serve tail traffic in
a cost-effective way.

6 CONCLUSION

In this work, we applied and implemented the concept of slice-based learning to our skill routing
model for a large-scale commercial conversational AI system. To enable the existing model to pay
extra attention to selected tail intents, we tested different ways of computing slice distribution by
using membership likelihood and experts’ prediction confidence scores. Our experiments show that
the slice-based learning can effectively and evenly improve model performance on tail intents while
maintaining overall performance. We also compared the slice learning method against upsampling in
terms of handling tail intents. The results suggest that slice-based learning outperforms upsampling
by a small margin, while more evenly uplifting tail intents’ performance. A potential future work
would be to explore how to adapt SBL to monitor a large number of slices with minimum model
and runtime complexity.

7

Published at ICLR 2021 Workshop on Weakly Supervised Learning

REFERENCES

Vivien Cabannnes, Alessandro Rudi, and Francis Bach. Structured prediction with partial labelling
through the infimum loss. In International Conference on Machine Learning, pp. 1230–1239.
PMLR, 2020.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Vincent Chen, Sen Wu, Alexander J Ratner, Jen Weng, and Christopher Ré. Slice-based learning: A
programming model for residual learning in critical data slices. In Advances in neural information
processing systems, pp. 9397–9407, 2019.

Ali El-Kahky, Xiaohu Liu, Ruhi Sarikaya, Gokhan Tur, Dilek Hakkani-Tur, and Larry Heck. Ex-
tending domain coverage of language understanding systems via intent transfer between domains
using knowledge graphs and search query click logs. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4067–4071. IEEE, 2014.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional lstm
and other neural network architectures. Neural networks, 18(5-6):602–610, 2005.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning. In 2008 IEEE international joint conference on neural networks
(IEEE world congress on computational intelligence), pp. 1322–1328. IEEE, 2008.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Fei Huang, Arun Ahuja, Doug Downey, Yi Yang, Yuhong Guo, and Alexander Yates. Learning rep-
resentations for weakly supervised natural language processing tasks. Computational Linguistics,
40(1):85–120, 2014.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Han Li, Sunghyun Park, Aswarth Dara, Jinseok Nam, Sungjin Lee, Young-Bum Kim, Spyros Mat-
soukas, and Ruhi Sarikaya. Neural model robustness for skill routing in large-scale conversational
ai systems: A design choice exploration. arXiv preprint arXiv:2103.03373, 2021.

Ben Medlock and Ted Briscoe. Weakly supervised learning for hedge classification in scientific lit-
erature. In Proceedings of the 45th annual meeting of the association of computational linguistics,
pp. 992–999, 2007.

Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Is object localization for free?-weakly-
supervised learning with convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 685–694, 2015.

Sunghyun Park, Han Li, Ameen Patel, Sidharth Mudgal, Sungjin Lee, Young-Bum Kim, Spyros
Matsoukas, and Ruhi Sarikaya. A scalable framework for learning from implicit user feedback to
improve natural language understanding in large-scale conversational ai systems. arXiv preprint
arXiv:2010.12251, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

8

Published at ICLR 2021 Workshop on Weakly Supervised Learning

Gustavo Penha and Claudia Hauff. Slice-aware neural ranking. In Proceedings of the 5th Interna-
tional Workshop on Search-Oriented Conversational AI (SCAI), pp. 1–6, 2020.

Julia Peyre, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Weakly-supervised learning of visual
relations. In Proceedings of the ieee international conference on computer vision, pp. 5179–5188,
2017.

Alessandro Prest, Cordelia Schmid, and Vittorio Ferrari. Weakly supervised learning of interactions
between humans and objects. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(3):601–614, 2011.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. Advances in neural information processing
systems, 29:3567–3575, 2016.

Alexander J Ratner, Braden Hancock, and Christopher Ré. The role of massively multi-task and
weak supervision in software 2.0. In CIDR, 2019.

Ruhi Sarikaya. The technology behind personal digital assistants: An overview of the system archi-
tecture and key components. IEEE Signal Processing Magazine, 34(1):67–81, 2017.

Michael R Smith, Tony Martinez, and Christophe Giraud-Carrier. An instance level analysis of data
complexity. Machine learning, 95(2):225–256, 2014.

Cheng Wang and Mathias Niepert. State-regularized recurrent neural networks. In International
Conference on Machine Learning, pp. 6596–6606, 2019.

Cheng Wang, Carolin Lawrence, and Mathias Niepert. Uncertainty estimation and calibration with
finite-state probabilistic {rnn}s. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=9EKHN1jOlA.

Mengqiu Wang and Christopher D Manning. Cross-lingual projected expectation regularization for
weakly supervised learning. Transactions of the Association for Computational Linguistics, 2:
55–66, 2014.

Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National science review, 5(1):
44–53, 2018.

9

https://openreview.net/forum?id=9EKHN1jOlA

	Introduction
	Related Work
	Slice-Based Learning
	Weakly Supervised Learning
	Conversational Skill Routing Models

	Slice-Aware Conversational Skill Routing Models
	Backbone Model
	Slice-Aware Architecture

	Experiments
	Experiment Setup and Implementation Details
	Experiments on the Attention Mechanisms
	Comparison between Slice-Based Learning and Upsampling

	Discussion
	Conclusion

