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ABSTRACT

We introduce TabTransformer, a new tabular data modeling architecture based on
deep self-attention Transformers. Our model works by embedding categorical fea-
tures in a robust and contextual manual, resulting in better prediction performance.
We evaluate TabTransformer for supervised setting through extensive experiments
on fifteen publicly available datasets, and conclude that it outperforms the state-of-
the-art deep learning methods for tabular data by at least 1.0% on mean AUC. Fur-
thermore, for the semi-supervised setting we develop an unsupervised pre-training
and fine-tuning paradigm to learn data-driven contextual embeddings, resulting in
an average 2.1% AUC lift over the state-of-the-art methods. Lastly, we demon-
strate that the contextual embeddings learned from TabTransformer provide better
interpretability, and are highly robust against both missing and noisy data features.

1 INTRODUCTION

Tabular data regression and classification are crucial to many real-world applications such as recom-
mender systems (Cheng et al., 2016), online advertising (Song et al., 2019), and sales forecasting
(Pavlyshenko, 2019). Many machine learning competitions such as Kaggle (Kaggle, 2020) and
KDD Cup (SIGKDD, 2020) are primarily designed to solve problems in tabular domain, where var-
ious machine learning models are built to take each instance (row of tabular data) as input and map
it to a target value.

The state-of-the-art for modeling tabular data is tree-based ensemble methods such as the gradient
boosted decision trees (GBDT) (Chen & Guestrin, 2016). This differs from modeling image and
text data where all the existing competitive models are based on deep learning (Sandler et al., 2018;
Devlin et al., 2019). The tree-based ensemble models are accurate, fast to train, and easy to interpret,
making them highly favourable among machine learning practitioners. However, their limitations
are significant compared with deep learning models: (a) they do not allow efficient end-to-end learn-
ing of image/text encoders in presence of multi-modality along with tabular data; (b) they do not
fit into the state-of-the-art semi-supervised learning framework due to unreliable probability estima-
tion produced by basic decision tree (Tanha et al., 2017); and (c) they do not enjoy the SoTA deep
learning methods (Devlin et al., 2019) to handle missing and noisy data features.

A classical and popular model that is trained using gradient descent and hence allows end-to-end
learning of image/text encoders is multi-layer perceptron (MLP). The MLPs usually learn paramet-
ric embeddings to encode categorical/continuous data features. But due to their shallow architecture
and context-free nature of the learned embeddings, they have the following limitations: (a) neither
the model nor the learned embeddings are interpretable; (b) it is not robust against missing and noisy
data (Section 3.2); (c) for semi-supervised learning, they do not achieve competitive performance
(Section 3.4). Most importantly, the prediction accuracy of MLPs do not match that of tree-based
models on most of the datasets (Arik & Pfister, 2019). To bridge this performance gap, researchers
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have proposed various deep learning models (Arik & Pfister, 2019; Song et al., 2019; Cheng et al.,
2016; Guo et al., 2018). Although these deep learning models achieve comparable prediction accu-
racy, they do not address all the limitations of GBDT and MLP. Furthermore, their comparisons are
done in a limited setting of a handful of datasets. In particular, in Section 3.3 we show that when
compared to standard GBDT on a large collection of datasets, GBDT perform significantly better
than these recent models.

Different from tabular domain, the application of embeddings has been studied extensively in natural
language processing. The embedding technique encodes discrete words (a categorical variable) in a
dense low dimensional space, beginning from Word2Vec (Rong, 2014) with the context-free word
embeddings to BERT (Devlin et al., 2019) which provides the contextual word embeddings. Based
on contextual embedding, the self-attention Transformers (Vaswani et al., 2017) has achieved state-
of-the-art performance on many NLP tasks. Additionally, the pre-training/fine-tuning paradigm in
BERT, which pre-trains the Transformers on a large coprus of unsupervised text and fine-tunes it
on downstream tasks with labeled text, has shed light on tabular data modeling in semi-supervised
learning.

Motivated by the successful applications of Transformers in NLP, we adapt them in tabular domain.
Particularly, TabTransformer modifies a sequence of multi-head attention-based Transformer layers
on parametric embeddings to transform them into contextual embeddings, bridging the performance
gap between baseline MLP and GBDT models. We investigate the effectiveness and interpretability
of the resulting contextual embeddings generated by the Transformers. We find that highly corre-
lated features (including feature pairs in the same column and cross column) result in embedding
vectors that are close together in Euclidean distance, whereas no such pattern exists in context-free
embeddings learned in a baseline MLP model. We also study the robustness of the TabTransformer
against random missing and noisy data. The contextual embeddings make them highly robust in
comparison to MLPs. Finally, we exploit the pre-training/fine-tuning methodologies from NLP and
propose a semi-supervised learning approach for pre-training TabTransformer using unlabeled data
and fine-tuning it on labeled data.

One of the key benefits of our proposed method for semi-supervised learning is the two independent
training phases: a costly pre-training phase on unlabeled data and a lightweight fine-tuning phase
on labeled data. This differs from many state-of-the-art semi-supervised methods (Chapelle et al.,
2009; Oliver et al., 2018; Stretcu et al., 2019) that require a single training job including both the
labeled and unlabeled data. The separated training procedure benefits the scenario where the model
needs to be pretrained once but fine-tuned multiple times for multiple target variables. This scenario
is in fact quite common in the industrial setting as companies tend to have one large dataset (e.g.
describing customers/products) and are interested in applying multiple analyses on this data. We
summarize our contributions as follows:

1. We propose TabTransformer, an architecture that provides and exploits contextual embed-
dings of categorical features. We provide extensive experiments showing that TabTrans-
former is superior to SoTA deep network models.

2. We investigate the resulting contextual embeddings and highlight their interpretability, con-
trasted to parametric context-free embeddings achieved by existing art.

3. We demonstrate the robustness of TabTransformer against noisy and missing data.

4. We provide and extensively study a two-phase pre-training then fine-tune procedure for
tabular data, beating the state-of-the-art performance of semi-supervised learning methods.

2 ARCHITECTURE AND TRAINING PROCESS

The TabTransformer architecture comprises a column embedding layer, a stack of N Transformer
layers, and a multi-layer perceptron. Each Transformer layer (Vaswani et al., 2017) consists of a
multi-head self-attention layer followed by a position-wise feed-forward layer. The architecture of
TabTransformer is shown below in Figure 1.

In our experiments we use standard feature engineering techniques to transform special types such
as text, zipcodes, ip addresses etc., into either numeric or categorical features. Although better
techniques may exist for handling special data types they are outside the scope of this paper.
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Figure 1: The architecture of TabTransformer.

Let (x, y) denote a features-target pair, where x ≡ {xcat,xcont} are processed features, and y is tar-
get value. The xcat denotes all the categorical features and xcont ∈ Rc denotes all of the c continuous
features. Let xcat ≡ {x1, x2, · · · , xm} with each xi being a categorical feature, for i ∈ {1, · · · ,m}.
We embed each of the xi categorical features into a parametric embedding of dimension d using Col-
umn embedding, which is explained below in detail. Let eφi

(xi) ∈ Rd for i ∈ {1, · · · ,m} be the
embedding of the xi feature, and Eφ(xcat) = {eφ1

(x1), · · · , eφm
(xm)} be the set of embeddings

for all the categorical features.

Next, these parametric embeddings Eφ(xcat) are passed through N Transformer layers. Each
parametric embedding is transformed into contextual embedding when outputted from the top
layer Transformer, through successive aggregation of context from other embeddings. We denote
the sequence of N Transformer layers as a function fθ. The function fθ operates on paramet-
ric embeddings {eφ1

(x1), · · · , eφm
(xm)} and returns the corresponding contextual embeddings

{h1, · · · ,hm} where hi ∈ Rd for i ∈ {1, · · · ,m}. The contextual embeddings {h1, · · · ,hm} are
concatenated along with the continuous features xcont to form a vector of dimension (d ×m + c).
This vector is inputted to an MLP, denoted by gψ , to predict the target y. Let H be the cross-entropy
for classification tasks and mean square error for regression tasks. We minimize the following loss
function L(x, y) to learn all the TabTransformer parameters in an end-to-end learning by the first-
order gradient methods. The TabTransformer parameters include φ for column embedding, θ for
Transformer layers, and ψ for the top MLP layer.

L(x, y) ≡ H(gψ(fθ(Eφ(xcat)),xcont), y) . (1)

Below, we explain the column embedding.

Column embedding. For each categorical feature (column) i, we have an embedding lookup table
eφi

(.), for i ∈ {1, 2, ...,m}. For ith feature with di classes, the embedding table eφi
(.) has (di+1)

embeddings where the additional embedding corresponds to a missing value. The embedding for the
encoded value xi = j ∈ [0, 1, 2, .., di] is eφi

(j) = [cφi
,wφij

], where cφi
∈ R` and wφij

∈ Rd−`.
The column-specific and unique identifier cφi ∈ R` distinguishes the classes in column i from those
in the other columns. The dimension of cφi , `, is a hyper-parameter.
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The use of unique identifier is innovative and particularly designed for tabular data. Rather in NLP,
embeddings are element-wisely added with the positional encoding of the word in the sentence.
Since, in tabular data, there is no ordering of the features, we do not use positional encodings. The
strategies include both different choices for `, d and element-wise adding the unique identifier and
feature-value specific embeddings rather than concatenating them.

Pre-training the Embeddings. The contextual embeddings explained above are learned in end-
to-end supervised training using labeled examples. For a scenario, when there are a few labeled
examples and a large number of unlabeled ones, we introduce a pre-training procedure to train
the Transformer layers using unlabeled data. This is followed by fine-tuning of the pre-trained
Transformer layers along with the top MLP layer using the labeled data. For fine-tuning, we use the
supervised loss defined in Equation 1.

We explore two different types of pre-training procedures, the masked language modeling (MLM)
(Devlin et al., 2019) and the replaced token detection (RTD) (Clark et al., 2020). Given an input
xcat = {x1, x2, ..., xm}, MLM randomly selects k% features from index 1 to m and masks them
as missing. The Transformer layers along with the column embeddings are trained by minimizing
cross-entropy loss of a multi-class classifier, which predicts the original features of the masked
features using contextual embeddings outputted from the top-layer Transformer.

Instead of masking features, RTD replaces the original feature by a random value of that feature.
Here, the loss is minimized for a binary classifier that predicts whether or not the feature has been
replaced. To compute the replacement value, the original RTD in Clark et al. (2020) uses an encoder
network to sample a subset of features. The reason to use an encoder network is that there are
tens of thousands of tokens in language data and a uniformly random token can be easily detected.
In contrast, we use uniformly random values to replace tabular features because (a) the number of
classes within each categorical feature is typically limited; (b) a different binary classifier is defined
for each column rather than a shared one, as each column has its own embedding lookup table.
We name the two pre-training methods as TabTransformer-MLM and TabTransformer-RTD. In our
experiments, the replacement value k is set to 30.

3 EXPERIMENTS

Data. We evaluate TabTransformer and baseline models on 15 publicly available binary classifica-
tion datasets from the UCI repository (Dua & Graff, 2017), the AutoML Challenge (Guyon et al.,
2019), and Kaggle (Kaggle, 2020) for both supervised and semi-supervised learning. Each dataset
is divided into five cross-validation splits. The training/validation/testing proportion of the data for
each split are 65/15/20%. The number of categorical features across dataset ranges from 2 to 136.
In the semi-supervised experiments, for each dataset and split, p observations in the training data
are uniformly sampled as the labeled data with a fixed random seed and the remaining training data
are set as unlabeled set. The value of p is chosen as 50, 200, and 500, corresponding to 3 different
scenarios. In the supervised experiments, each training dataset is fully labeled.

Setup. For TabTransformer, the hidden (embedding) dimension, the number of layers and the num-
ber of attention heads are fixed to 32, 6, and 8 respectively; these parameters are pre-selected by
hyperparameter optimization (HPO) on a small number of datasets. The MLP layer sizes are set to
{4 × l, 2 × l}, where l is the size of its input. Each competitor model is given 20 HPO rounds for
each cross-validation split. For evaluation metrics, we use the Area under the curve (AUC) (Bradley,
1997). Note, the pre-training is only applied in semi-supervised scenario. We do not find much ben-
efit in using it when the entire data is labeled. Its benefit is evident when there is a large number of
unlabeled examples and a few labeled examples. Since in this scenario the pre-training provides a
representation of the data that could not have been learned based only on the labeled examples.

3.1 THE EFFECTIVENESS OF THE TRANSFORMER LAYERS

First, a comparison between TabTransformers and the baseline MLP is conducted in a supervised
learning scenario. We remove the Transformer layers fθ from the architecture, fix the rest of the
components, and compare it with the original TabTransformer. The model without the Transformer
layers is equivalently an MLP. The dimension of embeddings d for categorical features is set as 32 for
both models. The comparison results over 15 datasets are presented in Table 1. The TabTransformer
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Table 1: Comparison between TabTransfomers and the baseline MLP. The evaluation metric is AUC
in percentage.

Dataset Baseline MLP TabTransformer Gain (%)

albert 74.0 75.7 1.7
1995 income 90.5 90.6 0.1
dota2games 63.1 63.3 0.2
hcdr main 74.3 75.1 0.8
adult 72.5 73.7 1.2
bank marketing 92.9 93.4 0.5
blastchar 83.9 83.5 -0.4
insurance co 69.7 74.4 4.7
jasmine 85.1 85.3 0.2
online shoppers 91.9 92.7 0.8
philippine 82.1 83.4 1.3
qsar bio 91.0 91.8 0.8
seismicbumps 73.5 75.1 1.6
shrutime 84.6 85.6 1.0
spambase 98.4 98.5 0.1

with the Transformer layers outperforms the baseline MLP on 14 out of 15 datasets with an average
1.0% gain in AUC.

Next, we take contextual embeddings from different layers of the Transformer and compute a t-SNE
plot (Maaten & Hinton, 2008) to visualize their similarity in function space. More precisely, for
each dataset we take its test data, pass their categorical features into a trained TabTransformer, and
extract all contextual embeddings (across all columns) from a certain layer of the Transformer. The
t-SNE algorithm is then used to reduce each embedding to a 2D point in the t-SNE plot. Figure 2
(left) shows the 2D visualization of embeddings from the last layer of the Transformer for dataset
bank marketing. Each marker in the plot represents an average of 2D points over the test data points
for a certain class. We can see that semantically similar classes are close with each other and form
clusters (annotated by a set of labels) in the embedding space. For example, all of the client-based
features (color markers) such as job, education level and martial status stay close in the center and
non-client based features (gray markers) such as month (last contact month of the year), day (last
contact day of the week) lie outside the central area; in the bottom cluster the embedding of owning
a housing loan stays close with that of being default; over the left cluster, embeddings of being a
student, martial status as single, not having a housing loan, and education level as tertiary get to-
gether; and in the right cluster, education levels are closely associated with the occupation types
(Torpey & Watson, 2014). In Figure 2, the center and right plots are t-SNE plots of embeddings be-
fore being passed through the Transformer and the context-free embeddings from MLP, respectively.
For the embeddings before being passed into the Transformer, it starts to distinguish the non-client
based features (gray markers) from the client-based features (color markers). For the embeddings
from MLP, we do not observe such pattern and many categorical features which are not semanti-
cally similar are grouped together, as indicated by the annotation in the plot. We also evaluate the
effectiveness of TabTransformer by fitting embeddings extracted from different layers into a linear
model.

3.2 THE ROBUSTNESS OF TABTRANSFORMER

We demonstrate the robustness of TabTransformer on the noisy data and data with missing values,
against the baseline MLP. We consider these two scenarios only on categorical features to specifi-
cally prove the robustness of contextual embeddings from the Transformer layers.

Noisy Data. On the test examples, we firstly contaminate them by replacing a certain number of
values by randomly generated ones from the corresponding columns (features). Next, the noisy data
are passed into a trained TabTransformer to compute a prediction AUC score. Results on a set of
3 datasets are presented in Figure 3. As the noisy rate increases, TabTransformer performs better
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Figure 2: t-SNE plots of learned embeddings for categorical features on dataset BankMarketing.
Left: TabTransformer – the embeddings generated from the last layer of the attention-based Trans-
former. Center: TabTransformer – the embeddings before being passed into the attention-based
Transformer. Right: The embeddings learned from MLP.

in prediction accuracy and thus is more robust than MLP. In particular notice the Blastchar dataset
where the performance is near identical with no noise, yet as the noise increases, TabTransformer
becomes significantly more performant compared to the baseline. We conjecture that the robustness
comes from the contextual property of the embeddings. Despite a feature being noisy, it draws
information from the correct features allowing for a certain amount of correction.

Data with Missing Values. Similarly, on the test data we artificially select a number of values to be
missing and send the data with missing values to a trained TabTransformer to compute the prediction
score. Figure 4 shows the same patterns of the noisy data case, i.e. that TabTransformer shows better
stability than MLP in handling missing values.

Figure 3: Performance of TabTransformer and MLP with noisy data. For each dataset, each predic-
tion score is normalized by the score of TabTransformer at 0 noise.
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Figure 4: Performance of TabTransformer and MLP under missing data scenario. For each dataset,
each prediction score is normalized by the score of TabTransformer trained without missing values.

Table 2: Model performance in supervised learning. The evaluation metric is mean ± standard
deviation of AUC score over the 15 datasets for each model. Larger the number, better the result.
The top 2 numbers are bold.

Model Name Mean AUC (%)

TabTransformer 82.8± 0.4
MLP 81.8± 0.4
GBDT 82.9± 0.4
Sparse MLP 81.4± 0.4
Logistic Regression 80.4± 0.4
TabNet 77.1± 0.5
VIB 80.5± 0.4

3.3 SUPERVISED LEARNING

Here we compare the performance of TabTransformer against following four categories of methods:
(a) Logistic regression and GBDT; (b) MLP and a sparse MLP following Morcos et al. (2019); (c)
TabNet model of Arik & Pfister (2019); and (d) the Variational Information Bottleneck model (VIB)
of Alemi et al. (2017).

Results are summarized in Table 2. TabTransformer, MLP, and GBDT are the top 3 performers. The
TabTransformer outperforms the baseline MLP with an average 1.0% gain and perform comparable
with the GBDT. Furthermore, the TabTransformer is significantly better than TabNet and VIB, the
recent deep networks for tabular data.

3.4 SEMI-SUPERVISED LEARNING

We evaluate the TabTransformer under the semi-supervised learning scenario where few labeled
training examples are available together with a significant number of unlabeled samples. Specifi-
cally, we compare our pretrained and then fine-tuned TabTransformer-RTD/MLM against following
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Table 3: Semi-supervised learning results for 6 datasets with more than 30K data points, for different
number of labeled data points. Evaluation metrics are mean AUC in percentage. Larger the number,
better the result.

# Labeled data 50 200 500

TabTransformer-RTD 66.6± 0.6 70.9± 0.6 73.1± 0.6
TabTransformer-MLM 66.8± 0.6 71.0± 0.6 72.9± 0.6
MLP (ER) 65.6± 0.6 69.0± 0.6 71.0± 0.6
MLP (PL) 65.4± 0.6 68.8± 0.6 71.0± 0.6
TabTransformer (ER) 62.7± 0.6 67.1± 0.6 69.3± 0.6
TabTransformer (PL) 63.6± 0.6 67.3± 0.7 69.3± 0.6
MLP (DAE) 65.2± 0.5 68.5± 0.6 71.0± 0.6
GBDT (PL) 56.5± 0.5 63.1± 0.6 66.5± 0.7

semi-supervised models: (a) Entropy Regularization (ER) (Grandvalet & Bengio, 2006) combined
with MLP and TabTransformer; (b) Pseudo Labeling (PL) (Lee, 2013) combined with MLP, Tab-
Transformer, and GBDT (Jain, 2017); (c) MLP (DAE): an unsupervised pre-training method de-
signed for deep models on tabular data – the swap noise Denoising AutoEncoder (Jahrer, 2018).

The pre-training models TabTransformer-MLM, TabTransformer-RTD and MLP (DAE) are firstly
pretrained on the entire unlabeled training data and then fine-tuned on labeled data. The semi-
supervised learning methods, Pseudo Labeling and Entropy Regularization, are trained on the mix
of labeled and unlabeled training data. To better present results, we split the set of 15 datasets into
two subsets. The first set includes 6 datasets with more than 30K data points and the second set
includes remaining 9 datasets.

The results are presented in Table 3 and Table 4. When the number of unlabeled data is large, Table
3 shows that our TabTransformer-RTD and TabTransformer-MLM significantly outperform all the
other competitors. Particularly, TabTransformer-RTD/MLM improves over all the other competi-
tors by at least 1.2%, 2.0% and 2.1% on mean AUC for the scenario of 50, 200, and 500 labeled
data points respectively. The Transformer-based semi-supervised learning methods TabTransformer
(ER), TabTransformer (PL), and the tree-based semi-supervised learning method GBDT (PL) per-
form worse than the average of all the models. When the number of unlabeled data becomes smaller,
as shown in Table 4, TabTransformer-RTD still outperforms most of its competitors but with a
marginal improvement.

Furthermore, we observe that when the number of unlabeled data is small as shown in Table 4,
TabTransformer-RTD performs better than TabTransformer-MLM, thanks to its easier pre-training
task (a binary classification) than that of MLM (a multi-class classification). This aligns with the
finding of the ELECTRA paper (Clark et al., 2020). In Table 4, with only 50 labeled data points,
MLP (ER) and MLP (PL) beat our TabTransformer-RTD/MLM. This can be attributed to that there
is room to improve in our fine-tuning procedure. Particularly, our approach allows to obtain infor-
mative embeddings but does not allow the weights of the classifier itself to be trained with unlabelled
data. Since this issue does not occur for ER and PL, they obtain an advantage in extremely small
labelled set. We point out however that this only means that the methods are complementary and a
possible follow up could combine the best of all approaches.

Both evaluation results, Table 3 and Table 4, show that our TabTransformer-RTD and Transformers-
MLM models are promising in extracting useful information from unlabeled data to help supervised
training, and are particularly useful when the size of unlabeled data is large.

4 RELATED WORK

For supervised learning, standard MLPs have been applied to tabular data for many years
(De Brébisson et al., 2015). For deep models designed specifically for tabular data, there are deep
versions of factorization machines (Guo et al., 2018; Xiao et al., 2017), deep MLPs-based methods
(Wang et al., 2017; Cheng et al., 2016; Cortes et al., 2016), Transformers-based methods (Song
et al., 2019; Li et al., 2020; Sun et al., 2019), and deep versions of decision-tree-based algorithms
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Table 4: Semi-supervised learning results for 9 datasets with less than 30K data points, for different
number of labeled data points. Evaluation metrics are mean AUC in percentage. Larger the number,
better the result.

# Labeled data 50 200 500

TabTransformer-RTD 78.6± 0.6 81.6± 0.5 83.4± 0.5
TabTransformer-MLM 78.5± 0.6 81.0± 0.6 82.4± 0.5
MLP (ER) 79.4± 0.6 81.1± 0.6 82.3± 0.6
MLP (PL) 79.1± 0.6 81.1± 0.6 82.0± 0.6
TabTransformer (ER) 77.9± 0.6 81.2± 0.6 82.1± 0.6
TabTransformer (PL) 77.8± 0.6 81.0± 0.6 82.1± 0.6
MLP (DAE) 78.5± 0.7 80.7± 0.6 82.2± 0.6
GBDT (PL) 73.4± 0.7 78.8± 0.6 81.3± 0.6

(Ke et al., 2019; Yang et al., 2018). In particular, Song et al. (2019) apply one layer of multi-head
attention on embeddings to learn higher order features. The higher order features are concatenated
and inputted to a fully connected layer to make the final prediction. Li et al. (2020) use self-attention
layers and track the attention scores to obtain feature importance scores. Sun et al. (2019) combine
the Factorization Machine model with transformer mechanism. All 3 papers are focused on recom-
mendation systems with input data being high dimensional and extremely sparse, which makes it
hard to have a clear comparison with this paper. Recent TabNet (Arik & Pfister, 2019) is designed
on the sparse feature interaction of tabular data, and has a very different mechanism than our self-
attention based one. There are a few works focusing on database oriented task in tabular domain,
such as column categorization (Chen et al., 2019), entity linking (Luo et al., 2018), table layout iden-
tification (Habibi et al., 2020), and table augmentation (Deng et al., 2019). However, these tasks are
fundamentally different from typical ML classification problem. They do not classify individual
rows of a table, but properties of the table itself, i.e., meta-data. For this reason we do not elaborate
the details of these papers nor compare our results with theirs.

For semi-supervised learning, Izmailov et al. (2019) give a semi-supervised method based on density
estimation and evaluate their approach on tabular data. Pseudo labeling (Lee, 2013) is an efficient
and popular baseline method. The pseudo labeling uses the current network to infer pseudo-labels
of unlabeled examples, by choosing the most confident class. These pseudo-labels are treated like
human-provided labels in the cross entropy loss. Label propagation (Zhu & Ghahramani, 2002;
Iscen et al., 2019) is a similar approach where a node’s labels propagate to all nodes according to
their proximity, and are used by the training model as if they were the true labels. Another standard
method in semi-supervised learning is entropy regularization (Grandvalet & Bengio, 2005; Sajjadi
et al., 2016). It adds average per-sample entropy for the unlabeled examples to the original loss
function for the labeled examples. Additionally, a classical approach of semi-supervised learning
is co-training (Nigam & Ghani, 2000). However, the recent approaches - entropy regularization
and pseudo labeling - are typically better and more popular. A succinct review of semi-supervised
learning methods in general can be found in Oliver et al. (2019); Chappelle et al. (2010).

5 CONCLUSION

We proposed TabTransformer, a novel deep tabular data modeling architecture for supervised and
semi-supervised learning. Extensive experiments show that TabTransformer significantly outper-
forms recent deep networks while matching the performance of GBDT. In addition, we study a two-
phase pre-training/fine-tune paradigm for tabular data, beating the state-of-the-art semi-supervised
learning methods. For future work, it would be interesting to investigate them in detail.
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